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(OR MELTING) PROBLEM* 

ANASTAS LAZARIDIS t 
Columbia University, New York, New York, U.S.A. 

(Received 13 October 1969 and in revtiedform 6 January 1970) 

Abstract-- The purpose of this investigation was to develop a simple numerical technique with which to 
treat heat-transfer problems involving a change of phase. These problems are nonlinear due to the con- 
ditions at the moving interface boundary surface. The numerical scheme presented here solves the pertinent 
equations for the multidimensional problem and determines the temperature distribution in both media 
around the liquid-solid interface while at the same time it locates the loci of the latter as time progresses. 

The types of boundary conditions most frequently encountered in practice are studied in the analysis; 
the sample problems are selected in such a way as to reflect constant temperature and Newtonian cooling 
conditions at the boundary of the solidifying substance. The two-dimensional slab and the two- and three- 
dimensional comers are used to exemplify typical multidimensional geometries. 

Comparisons of the results obtained in this work with the few existing solutions show satisfactory agree- 
ment 

NOMENCLATURE 

4 419 42, 
A,,, A223 

a, b, d, 

Bi,, Bin, 

Cl, Cgr 

D, 

D1, D,, 

coefficients in temperature pro- 
file ; 
terms defining A,, and de- 
fined by equations (16f, g, h) 
and(18d,e,f); 
Biot numbers at positions 
@IA<,, 0) and (0, nA[,), re- 
spectively ; 
specific heat capacities of solid 
and liquid phases, respect- 
ively ; 
region of space occupied by 
solidifying matter ; 
parts of space D occupied by 
solid and liquid phases, re- 
spectively ; 

*This paper is abstracted from the doctoral dissertation 
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h, h,, h,, 

k,, k,, 

L, 
11, 12, 

M, N, 

Qm Q,, 

SIT s,, 

functions appearing in the 
general description of the 
initial conditions ; 
heat-transfer coefficient ; sub- 
scripts have the same meaning 
as in Biot numbers ; 
thermal conductivities of solid 
and liquid phases, respectively ; 
latent heat of fusion ; 
dimensions of cross-section in 
Example 1; 
number of sections in x and y 
directions, respectively ; 
heat flux at boundary [di- 
mensionless] ; 
a convenient reference length ; 
interface boundary surface in 
Fig. 1; 
fixed boundaries of solid and 
liquid regions ; 
functions representing bound- 
ary conditions over the surfaces 
R,, and 4,; 
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Sl, s2, 

T,, 
t, to, 
V, 
& Y1 

Greek letters 

al, a2, 

/% 
Yi? 

6, 

A, 

e I’ 

I;;, 

P, 
(Ti7 

expressions of finite difference 
form used to approximate 
aT,/X, and dTl/atl ; 
temperatures ; 
ambient or surface tempera- 
tures; T,, 1: is the prescribed 
surface temperature at the 
point (map,, 0) and time zero ; 
initial temperature ; 
time ; 
solidification temperature ; 
space coordinates. 

thermal diffusivities (k,/pc,, 

blpc,); 
ratio of Biot numbers, Si,,,/Bi, ; 
ratio of diffusivities (1 when 
i = 1 and a2/al when i = 2) ; 
defines position of interface in 
the direction of the space 
variable following it ; 
represents increment of vari- 
able after it; 
position of interface in co- 
ordinate directions defined 
by subscript; the respective 
dimensionless variables are re- 
presented by an asterisk ; 
dimensionless temperature de- 
fined by equation (24) ; 
dimensionless fusion temper- 
ature ; 
ratio of conductivities ; 
latent heat parameter, 
L/c,(V - T,) = I/(V - T,); 
coordinate variables [dimen- 
sionless]; 
density ; 
ratio of S&/A& [dimension- 
less] ; 
dimensionless time variable, 
a,t/R’. 

INTRODUCTION 

The phenomena of melting and freezing are 
associated with many practical applications of 
current engineering interest. For example, they 
are evidenced during the production or melting 
of ice, the solidification of castings, the freezing 
of food-stuffs, the aerodynamic heating of 
missiles and others. The common feature ex- 
hibited by all of these problems is the existence 
of an interface boundary surface which moves 
either into the solid (melting) or into the liquid 
region (solidification) in accordance with the 
relative magnitudes of the temperature gradients 
on either side of it. The rate at which heat is 
removed from the solid-liquid interface deter- 
mines the rate of propagation of that surface ; 
the latter is desired along with the temperature 
distribution in the solid and the liquid regions 
at any time during the change of state. 

Generally, the problem involves a three- 
dimensional transient analysis and it is one of 
considerable mathematical complexity. Heat is 
absorbed or liberated at the transition region 
and the thermal properties of the two phases 
around it are usually different and generally 
temperature-dependent A heat balance across 
the interface indicates that the mathematical 
model is nonlinear [l, 21; coupled with it is 
the fact that the rate of travel of the phase 
change through the medium is unknown a 
priori. Finally, the various kinds of practical 
boundary and initial conditions are additional 
factors which further complicate the mathe- 
matics. 

The importance of the fusion problem has 
attracted a large number of investigators who 
have tried a variety of different techniques to 
obtain a solution. The literature covers both 
experimental and theoretical work in this area, 
but it deals with the one-dimensional geometry 
almost exclusively [l-3]. Some of this work has 
involved the study of the one-dimensional 
problem with cylindrical symmetry [l, 4-81 
as well as spherical symmetry [S, 9, lo]. The 
multidimensional problem seems to have been 
less popular, probably due to its higher com- 
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plexity. Only a very limited amount of research 
has been reported involving the two-dimensional 
case with some simple geometries and boundary 
and initial conditions of limited applicability 
[l l-141. 

The intent of this work was to obtain a numeri- 
cal solution of the solidification (melting) prob- 
lem for a pure substance (or eutectic alloy) in 
multidimensional space. The problem was con- 
sidered from the solidification point of view, 
especially as applied to the freezing of castings. 
It should be borne in mind, however, that the 
equations which govern the physical pheno- 
menon are the same for all the problems invol- 
ving melting or freezing (minor modifications 
may be necessary). Hence, the method developed 
in this manuscript is applicable to the entire 
class of these problems with possible minor 
modifications in the mathematical equations 
and the numerical approach. 

FORMULATION OF THE PROBLEM 

The fusion process for a pure substance 
(or a eutectic alloy) is described as follows. 
At time t,, the two regions D, (solid) and D, 
(liquid), which are bounded by the fixed bound- 
ary surfaces R,, and Rsz, respectively, comprise 
the domain D of space and are separated through 
the interface boundary surface R,,, (Fig 1). At 
the time instant t = t, + At the boundary R, 
is another surface in the region D (say, that 
shown by the dotted lines in the figure) deter- 
mined by the conditions of the problem (solidi- 
fication vs. melting). The problem is to locate 

FIG. 1. Graphical presentation of the solidification (or 
melting) problem. 

R, in space at any time t and subsequently deter- 
mine the temperature distributions Ti and T2 in 
the two domains D, and D, respectively. 

The mathematical analysis is considerably 
simplified by the following assumptions : 

1. The properties of the materials undergoing 
melting or freezing can be satisfactorily described 
by not more than two sets of properties, one for 
the liquid state and one for the solid state ; 
the density of both phases is assumed to be the 
same in the neighborhood of the interface. 

2. The liquid melt remains stationary so that 
heat is transferred through it only by conduction. 

Thus, the problem is equivalent to solving the 
heat conduction equation (1) for the temperatures 
Ti and T, subject to the conditions (2)-(5) at the 
fixed and moving boundaries and to the initial 
conditions (6) and (7). 

3 

a27; co aT 
Yi T=Y& 

Xj 

i= 1,2 (1) 

j=l 

SAT,) = 0 on R,, (2) 

S,CG) = 0 on Rs2 (3) 

at any point (Q, c2, c3) on the interface R, 

Tl = T2 = V = constant (4) 

i=l j=2 k=3 

i=2 j=3 kc1 

i=3 j=l k=2 (5) 

and at z = 0 

Ti =_L(tj); i = 1,2, j = 1,2,3 (6) 

R, = S(<j); j = L&3 (7) 

where by using a reference length R all the 
variables, except 3, Tl and T,, are normalized : 
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El(r) = q; j = 1,2,3. 

r 1 when i = 1 

Yi = a2 {-wheni=2. 
Ial 

In the above, equations (2), (3), (6) and (7) are 
general functional representations of the bound- 
ary and initial conditions, and equation (5) 
results as a consequence of a series of mathe- 
matical manipulations of the more elaborate 
energy balance equation at the solid-liquid 
interface [ 15, 163. The nonlinear behavior of the 
mathematical model is due to the presence of 
the energy balance relation; the usefulness of 
the reduced equation (5) is realized when the 
observation is made that the motion of the 
fusion front can be treated as quasi-one- 
dimensional, the temperature gradients being 
taken in one direction only. 

MATHEMATICAL ANALYSIS 

An auxiliary set of differential equations is 
derived in this section by reference to the 
condition that the interface is an isothermal 
surface. First, the time rate of change of the 
temperatures Tr and T2 vanishes at the interface ; 
thus, equation (9) is obtained. 

. 
3 

Yi c a2q aTad 
J. + &- = 0; k = 1,2,3. (9) 

j 
j=l 

Then, two consecutive differentiations of Tl and 
T2 along lines tangent to the interface yield 
equations (10)-(12) : 

a2Tk 32 o 

+ a<; ayi = -( 1 (11) 

where 

and 

j = 1 and i = 2,3 

,j=2andi= 1,3 

,j=3andi= 1,2 

i&+igg-$)+&&(&g 
+$g)@) +;~(~)=o 

(12) 
where i=landj=2andm=3 ’ 

i=2andj=3andm= 1 

i=3andj=landm=2 

and k= 1,2. 

The convenience of handling these expressions 
will be apparent later with the development of a 
numerical scheme which will deal with the inter- 
face motion along lines parallel to the co- 
ordinate axes and not along lines normal to 
itself. 

NUMERICAL ANALYSIS 

The finite difference approximations of both 
the implicit and the explicit types have been used 
in various numerical techniques developed 
previously. Most of these, however, have been 
applied to one-dimensional solidification prob- 
lems and they have not been extended to cover 
multidimensional conditions.t In this manu- 
script the explicit finite difference technique is 
adopted [17, 183 for all nodes sufficiently far 
from the interface and a special scheme is 
devised for points close to it.1 

To begin the numerical study, a network of 
lines is passed through the medium under 
consideration. For the sake of simplicity, a two- 
dimensional configuration will be considered in 
the following (cf. Fig. 2). Now, suppose that at 
time 2, the interface is known to be the curve 

i A concise summary of previous methods can lx found 
in [3]. 

$ Only the highlights of the method are presented here; 
the details can be found in [ 15). 
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AB in Fig. 2. Any point on this curve can be 
identified and traced in relation to a nodal point 
which neighbors it. The latter have been chosen 
to lie on the left and/or below the curve. Let one 
such node be the point P(pAl,, qA&). Its 
distance from and to the left of the fusion front 
is denoted by St1 and that below by 6t2, 

<‘t 
N IA 

At2=9 

FIG. 2 Finite difference grid of a plane surface showing 
interface curve AB and defining some terms used in the 

paper. 

The temperatures of all nodes (mAtI, nA<J 
located far enough from the interface are com- 
puted by the finite difference expression (13) of 
the explicit type. 

1 
(13) 

where yi has the meaning ascribed to it earlier 
and 

m = 1,2,. . . , p - 1, p + 2,. . . , M - 1 

n = 1,2,..., q- 1, q+2 ,...) N- 1. 

Care must be exercised with the selection of the 
time increment in equation (13) so that the co- 
efficient of Tk is positive; otherwise, the scheme 
may turn out to be unstable. 

Near the interface the derivatives of equations 
(9)-(12) are approximated by second order finite 
difference expressions ; for example, if pi = 
&!jJA&, i = 1,2, 

(3 - 2aJ V -__ ----- 
(1 -GJ(2-OJ 

-- l-GiT 

1 _- 
2 _ bi I( 1 P+=,q A& ’ (14) 

These relations are singular at pi = 0 for Tl and 
at oi = 1 for T,. However, the singularities can 
be avoided by means of the following technique. 
When a node is neighboring with the interface, 
its temperature is represented by a quadratic 
profile of the form 

T = A,,(<, - 6;) + A,,(<, - 4)’ 

+ A21(52 - 6;) + A22ct2 - 3’ 

+ A,(<, - ocr, - 4, + I/. (15) 

This approach has a truncation error of the 
same order of magnitude as the finite difference 
expressions of the type (14). Four cases are 
distinguished based on whether cri < 3 or 
oi > 4.t For instance, if 0 < trl < i, then 

A,, = -%fJ[(&)‘-i] (16a) 

t Six cases in the event a three-dimensional problem is 
considered. 
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where 

(16f) 

b=- 
21 

__- 
X, + A51 

+ (A<J(AU z2 CC’>’ - (@AU2 

+ (As,)(&)]} - $$%)(AL) 

- lU2Sl (16g) 

d = ‘A 

T;+_: 4 - V 

&TV 

- (A52)2} + g (V - Tk,;,‘-1) 10 
+ [1 - (~)7~tIl~M2$35~~ 

(16h) 
and s1 represents the finite difference approxi- 
mation of the form of equation (14) for (swat,) 
at (c’,, c’,). Finally, 

+ (AL/AM2 
1 - IT2 

Tk 

p+l.q 

1 

(2 - a,)(1 - 01) 

(A5 1/W2 T;% 
+ (2 - a2)(l - cT2, + T- 01 I 

(17a) 

when the node Q[(P + 1) AlI, qA<,] is a point 
like (2) in Fig. 2, or 

T;‘+:,q= {I -g[& 

'51 2 
+btl, ( )I1 Tk 

p+l,q 

UW 
when Q[p + 1) AtI, qAt2] is a point like (1). On 
the other hand, if 3 -C CJ 1 < 1, then 

T k-+1 
p+1,q = PI1 + 42u - ~JA511 

x (1 - o,)A~~ + V (18) 

and, A,, and A,, are given by equations (16a) 
and (16~) respectively, 

-412 = W51 - 6th 

(184 

A,,= -A12+[1+(;3] 

x A,,(s, - 4,) WW 

Al=~,2~-($;)i]+All 
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where 

a%; () s2a 
- I z @52)(At1 - 6tJ - y (184 

- (A52)2} + 1 - 
i 0 

;$ 
2 

‘1 

x @52)(Atl - XI) 11 W-I and s2 represents the finite difference approxi- 
mation for (~TJc?<~) at (E;, 6;). Finally, 

T k+l 
P.4 

(AWA~Z)~ Tk 

~2 11 P.4 

when the node &A<,, qAt2) is a point like (5) 
in Fig. 2, or 

T:~~=ll-~[~~+(~)‘]}T~,q 

x (T;,q-l + T;,,+,) 1 W-9 

when p(pA<,, 4Ar2) is a point like (4), or 

T k+l= I_- 
P.4 

{ [ 
2A2 1+ 
At: 

(AL/AU2 Tk 

02 11 P.4 

(19c) 

when P(pA<,, 4A?j2) is a point like (6) in Fig. 2. 
Similar relations are obtained for o2 (and cr3 in 
the three-dimensional case) in the ranges O-O.5 
and 0.5-1, respectively. 

The numerical equations developed for the 
conditions at the fixed boundaries are presented 
next. When the interface is away from the 
boundaries, equation (13) gives the tempera- 
tures of the nodes near these boundaries. When 
a boundary is exposed to convection heat 
transfer, the boundary temperatures are calcu- 
lated by means of one of the following three 
equations : 

(a) m # 0, n = 0 

(b) m = 0, n # 0 
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(c) m = 0, n = 0 

T:L{F-;$(l+$) 

where the proper (rl and cz are selected for 
every m and n and the space derivatives of 6; 
and ~1 are substituted by suitable finite differ- 
ence approximations. Similarly, in the case of 
Newtonian cooling at the boundaries, the 
initial displacement of the interface is computed 
from the equations 

Bi,(V - TJ 

T,,,) 1 (224 

where Bi, = h,R/k,, Bi, = h,R/k,, and fi = 
Bi,,,/Bi,,. The terms involving Q, and Q. have 
been added in order to include the case of a heat 
flux imposed on the boundaries. 

If the interface is between the boundary and 
the first node from it, a different set of equations 
of the form (16)-(1!$) is used for each type of 
boundary conditi0ns.t Finally, a word must be 
said about the procedure used to start the 
calculations of the solid-liquid interface motion. 
Thus, when the boundary temperatures are 
prescribed, the solidification front at the first 
time step is calculated from the simultaneous 
solution of the equations 

(3 - 2o,)(To - J’) 
- Ic (1 - a,)(2 - a,) 1 W) 

and 
O<nQN 

- $(4T”, I - 3V - T,,,) 1 VW 
2 

The numerical scheme of the three-dimen- 
sional case is similar to that applicable to the 
two-dimensional situation presented above, ex- 
cept for the additional terms which complicate 
the mathematics further. Nevertheless, a few 
minor modifications in the numerical technique 
are able to accommodate the presence of the 
additional terms so that the method of approach 
is essentially the same as before. To avoid 
repetition, the analysis associated with the 
three-dimensional problem is not covered here 
and the interested reader is referred to the 
author’s doctoral dissertation [ 153. 

SAMPLE PROBLEMS AND DISCUSSION 
OF RESULTS 

Before proceeding with the presentation of 
examples, it is advantageous to transform the 
variables Tl and T,, and the parameter ;I to 
dimensionless quantities. This is accomplished 
by the definitions 

_ ,J3 - 2~2)(G - V 1 
I' = A/(" - T,) (23 

(1 - 02)(2 - 02) ’ 

0 -C WI G M (21b) and 
8 = (T - T,)/(T, - T,) (24) 

t These expressions can be found in [15] together with where T is either Tl or T2 and T, is chosen to be 
details for their derivation. either the prescribed boundary temperature or 
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the ambient temperature. The symbol 0, will 
appear frequently in the graphical presentation 
of the results and in the discussion below; it 
represents the dimensionless fusion temperature 
and its definition follows directly from equation 
(24), where now the fusion temperature V 
substitutes for the variable T. 

Example 1. A prism of square cross-section is 
in the liquid state at the fusion temperature and 
it solidifies due to a constant temperature, lower 
than the solidification temperature, maintained 
at the surface of the prism. 

SOLIDIFICATION PROBLEM 1467 

First, the numerical results for the infinite 
corner are combined in the generalized curve of 
Fig. 3 for the depth of solidification. This graph 
represents a similarity solution of the same 
form as Stefan’s solution of the one-dimensional 
problem and it shows that the interface is a 
function of the parameters tr/,/r and rZ‘.i- 
Discrepancies in the positions of the points in 
this figure reflect numerical errors at the onset 
of the computations which diminish as time 
progresses. 

Subsequently, the results for the finite square 

&=I ,x"=l 5613 

T 

0 075 

A IO 

El 15 

_Q20 _ 

0 25 

FIG. 3. Similarity solution for the solidifying infinite corner initially at the melting 
temperature. 

The symmetry of this problem allows the 
simplification of considering only one quarter 
of the cross-section with two boundaries main- 
tained at the prescribed constant temperature 
while the others are kept insulated. The numeri- 
cal data selected for this example were those used 
in [12] and [13], i.e. I’ = 1.5613, 8, = 1, and 
I, = I, = 4 where I, and 1, are the normalized 
dimensions of the quarter square section and 
also the number of nodes if AtI = A& = 1. 

section are presented in Figs. 4-7. The loci of 
the interface are shown at several times as 
solidification progresses in Fig 4, from which 
the fraction of the solidified matter along the 
diagonal and at the insulated boundaries are 
obtained and plotted vs. the dimensionless time 
in Figs. 5 and 6, respectively. An examination of 

t In general, it is a function of (,/Jq &/Jr and 1*; 
however, in this case it is dependent on two parameters only 
because of symmetry. 
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3’ 

2-- 

I 

I -- 

I 

FIG. 4. Loci of interface at several times z for a square plate initially at the melting 
temperature. 

FIG. 5. Solid fraction along the diagonal of a square plate FIG. 6. Ratio of solidified mat&<ong the center line of the 
initially at the fusion temperature as a function of time. square plate of Figs 4 and 5 vs time. 
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these figures reveals that at the later times the 
results of this investigation compare favorably 
with those of Allen and Sevem [12] and Poots 
[ 131 while initially the discrepancies observed 
are quite 1arge.t Although the present method 
is approximate, as are both of the previous 
studies, the following discussion indicates that 
the results obtained here are the most accurate. 

. 

OI 
I-- 

FIG. 7. Temperature histories of some of the nodes in the 
square plate. 

First, Allen and Sevem considered the latent 
heat of fusion as heat generation apportioned to 
the various modes as a fraction of the area, h2 
= (AX) (By), depending on the location of the 
interface. The numerical value of their time 
increment was such that only 13 time steps were 
sufficient to solidify the slab. In the present 
procedure the time increment was chosen to be 

t The maximum relative error based on the results of this 
investigation is 18 and 16 per cent with [12] and [13], 
respectively. 

SOLIDIFICATION PROBLEM 1469 

AZ = 0405 so that the number of time steps 
required for the complete solidification of the 
slab exceeded 1000. In addition, the results of 
Allen and Sevem manifest an abnormal behavior 
of the interface motion and this, perhaps, may 
be attributed to computational inaccuracies. It 
is reasonable to expect that the interface curves 
converge closer and closer to each other as time 
progresses since the resistance to heat flow out 
of the slab increases with time. Nonetheless, this 
is not the case in Fig. 2 of [121.-t On the other 
hand, Poots assumed that the interface for such 
a configuration is a circle and he obtained two 
solutions by the approximate techniques of 
Pohlhausen and Tani, respectively [13]. It was 
then pointed out that the more accurate results 
of the Tani technique manifested a maximum 
error of about 13 per cent at the end of freezing 
compared with those of Allen and Severn. 

During the initial steps of solidification, the 
similarity solution for the infinite corner is also 
the solution for the finite slab. This has been 
plotted in Figs. 5 and 6 for comparison. The 
latter figure indicates that end effects start to be 
pronounced in the infinite slab at z = 1.0. 
Hence, the solution for the finite slab in Fig. 5 
must also approach the similarity curve in the 
time range 0 < r < 10 and any discrepancies 
must be attributed to starting errors in the 
former. It is evident from this figure that 
although these discrepancies are present, the 
solution obtained with At1 = At2 = 1 and 
AZ = 0405 is closer to the similarity curve than 
any of the other two references. What is more 
important is that the results obtained with 
A5 1 = Att = 0.5 and AZ = 0001 start along 
the similarity curve and move out as time 
progresses to join the curve obtained with 

A(, = At2 = 1 and AZ = 04X)5. It can, thus, be 
concluded that the present method is convergent 
and gives the most accurate results of all three. 
Finally, in Fig 7 the temperature histories of a 
few selected nodes in the slab are also shown 
for completeness. 

t Reference is also made to Table IV-4 of the author’s 
dissertation [lS]. 

F 
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Example 2. A liquid metal is poured into a boundary temperature is prescribed. Thus, the 
cast of square cross-section. It is required to only parameters of the problem are IC, y2, I’, O,, 
study the freezing process in the cast if it is <,/,/r and <,/Jr. In this case with Tpl = Taz, 
initially at a uniform tem~ratu~ above the the knowledge of ~J,/T is sufficient due to 
melting point and its surface is maintained symmetry. Again, the discrepancies in the 
symmetrically at the constant temperatures T,, location of the points in the figure reflect 
and/or Toz, where at least one of them is lower numerical errors at the beginning of the calcu- 
than the fusion temperature. It is assumed that lations which diminish rapidly. A check for 
the cast is large enough so that end effects are convergence was made by recomputing the 
not important (infinite comer). interface travel and the temperature distribution 

8,: ?/9 , A"= 0 5 

4 

> $x=0 , @'o,=O 

P 
T - 

V I25 

3- D 150 _ 

h 200 

a 250 

I / 

0 1 
0 I 

2 6,/./F-- 3 
4 5 

FIG. 8. Similarity solution for a long metal corner casting initially at a uniform temperature 
above the melting point and with prescribed boundary temperatures. 

Symmetry conditions make it possible again 
to consider only one quarter of the section as in 
the previous example. Figure 8 shows the 
similarity solution for the data K = 0.9, y2 = 0.9, 
A* = 0.5, 0, = l/9, and &,, = t+,, = 0, where 
f3,, and 8,,, are the dimensionless boundary 
temperatures prescribed along the lines 15~ = 0 
and <i = 0, respectively. This result is com- 
parable to the Neumann solution of the one- 
dimensional solidification problem in which the 

history in the medium with AZ = 0408 and 
Az = @OOl. The results were identical in all 
cases to the degree of accuracy required (third 
or fourth decimal place). Finally, in Fig 9 a 
variation of this problem is presented, where the 
same data are used with the exception that the 
bounda~ temperatures are not equal, viz 
BOX = 0 and t&, = 2/9. 

Example 3. A liquid metal is poured into a 
cast of square cross-section. It is required to 
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study the freezing process in the cast if it is obvious and it is verified explicitly with refer- 
initially at a uniform temperature above the ence to Figs. 13 and 14 where the interface 
melting point (0, -C 1) and it is suddenly positions along the diagonal and at infinity are 
exposed to an ambient temperature, T, lower plotted versus the Biot number. 
than the fusion temperature, through a pres- Example 4. A three-dimensional problem. A 
cribed heat-transfer coefficient, h. End effects liquid initially at the melting point is cast in a 
are assumed negligible (infinite corner). cubical enclosure. It is required to study the 

3 

2- 

:, 

I 
t 

O_ 
0 

FIG. 9. Loci of interface at various values of the time for a long metal corner casting 
initially at a uniform temperature above the melting point and with two different 

values prescribed at the two boundaries. 

The interface is graphed in Fig. 10 as a 
function of time for the data set of rc = 0.9, 
yz = 0.9, 1’ = 0.5 and 8, = l/9. The Biot 
number is chosen to be equal to Bi = 2. 

The convergence of the method is again 
examined. Thus, using the same data with 
different values of the prescribed Biot number 
at the boundaries, plots similar to those of Fig. 
10 were drawn locating the interface. Figures 11 
and 12 follow from those graphs; they, in turn, 
show the progress of solidification along the 
diagonal and on a line far from the corner, 
respectively, for various values of the Biot 
number. The convergence of the solution is 

solidification process in the cast if its surface is 
maintained at a constant temperature (only the 
comer effect is to be studied). 

The nature of the interface motion is shown 
in Figs. 15-18. The data used were I* = 1.5613 
and 8, = 1. The first four of these figures are 
graphs of the interface at different times on 
planes parallel to one of the boundary planes (in 
this case on the planes r3 = 1,2 and 3). The last 
figure is a plot of the same on the diagonal 
plane. These results are as expected; in fact, the 
plot for station l3 = 4 is identical with Fig 4 of 
the first example which is the two-dimensional 
counterpart of this problem. That figure repre- 
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FIG. 10. Interface positions at several values of time for a long metal corner casting initially 
at a uniform temperature above the melting point and subjected to Newtonian cooling. 

0 05 '0 r- 15 2.0 25 

FIG. 11. Progress of solidification front along the diagonal of the corner of Fig. 10 for 
various values of the Biot number. 
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FIG. 12. Progress of solidification front along a line at infinite distance from the comer of 
the problem of Fig. 10 for various values of the Biot number (onedimensional solution). 
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FIG. 13. Interface location along the diagonal at r = 0.5, .~. ._ 

FIG. 14. Interface position along a line at infinite distance 
from the comer of the problem of Fig. 10 at r = 1.0, 1.5,2.0 . . . . . . 

1.0,1.5 and 2Q va the Biot number for the problem of Fig 10. and 25 vs. the Biot number (one-cttmensionat solution). 
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8,; I , x”= 1.5613, c, = I 
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FIG. 15. Loci of interface in the plane 5s = 1 at various values of the time for a three- 
dimensional long comer initially at the fusion temperature and having a prescribed 

temperature on all the fixed boundaries. 

FIG. 16. Loci of interface in the plane c3 = 2 at various values of the time for the three- 
dimensional problem described in Fig. 15. 
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FIG. 17. Loci of interface in the plane 5s = 3 at various values of time for the three- 
dimensional problem described in Fig. 1.5. 
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FIG. 18. Loci of interface in the diagonal plane at several values of the 
time parameter for the three dimensional problem of Figs. lS17. 
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sents the interface travel on a plane located far University Computer Center for the permission to use its 

enough from the corner so that it is not subject facilities and the assistance provided in the course of the 

to its effects, yet. 
numerical computations. The financial assistance of the 
Heat and Mass Transfer Laboratory of Columbia University 
is appreciated. 
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WNE SOLUTION NWMBRIQUE DW PRQBLBME DE LA SOLIDIFICATION 
(OW DE LA FUSION) MULTIDIMEMSIONNELLE 

ih%w&-ti but de &te &I& %a& d’&abIir me technique nti&riiqw simple awrc laquetb cm puisse 
traiter ‘tes problemes de transport de cbateur faisant ~ntervenjr un ~ban~~at de phase Les prob&mes 
sent non b&aims B cause da conditions B Yinterhaee en mouv~m~nt Le sch&na numdrique prtSsente ici 
r&out les equations appropri&!s au probltme muhidimensionnel et dhtermiue ia distribution de temptra- 
ture dam les deux milieu autour de I’interface liquide solide en mdme temps qu’il donne le lieu de cette 
derniere au tours du temps 

Les types de conditions aw limites renconttt5es le plus fr&iemment en pratique sont btudiB dam 
I’analyse; fes problemes pris comme mempkes sont cboisis de telle fa~on qu% rep&entent les conditions 
de fa temp~rat~~ con&ante et du refro~~s~meut &on la Ioi de Newton ii Ia fronti&e de Ia substance en 
train de se sohditier. La plaque bjdimens~on~~~Ie et les coins bi- et t~d~me~s~onne~ sent employ&s pour 
dormer des examples de gOm&ries multidimeusionnelIes typiques. 

La comparison des resuhats obtenus ici avec ies quelques solutions existantes montrent un accord 
satisfaisant. 

Zpsamutet&s.~g--Es war der Zweck dieser Wntersuchung em einfaches tmmerisches Rechenverfahren 
zu entwickeln mit dem Widrmeiibertragungsprobleme einschliesslich der PbaseniibergBnge behandelt 
werden k&men. Diese’ Probleme sind wegen der wandernden PhasengrenzfHche nicht linear. Das 
numeriscbe Schema liefert die L&ungen der ~~h~~~~ Cleichungen fur das me~d~rnen~ona~e 
Problem und bereehnet die T~~t~~~u~~~ in den ~~~~ zu h&den S&en der ~ha~~re~~~~he~ 
~e~~~~t~~ wird der art der ~~seu~e~~~~ mit fo~~hre~te~er Zeit ermitteh. 

Die in der Praxis am h&.&gstm vorkommenden Randb~jn~n~e~ wurden untersucht, die Beispiefe 
sind 80 ausgewhhh, dass sic konstante Temperatur und Newton&he Abkiihhmgs-Bedingungen an der 
Grenze der erstarrenden Substanz widerspiegeln. Die zweidimensionale Platte und die zwei- oder 
dreidimensionale Bcke sind ah Beispiele ftir typische mehrdimensionale Geometrien verwendet. 

Vergleiche der erhaltenen Ergebnisse mit den wenigen existierendeu Liisungen zeigen eine zufrieden- 
steilende ~~us~rnrn~g. 


